Муниципальное автономное общеобразовательное учреждение города Новосибирска

«Лицей №22 «Надежда Сибири»

Главный корпус на Советской: г. Новосибирск, ул. Советская, 63, тел. 222-35-15,

e-mail: 1 22@edu54.ru

Корпус 99 на Чаплыгина: г. Новосибирск, ул. Чаплыгина, 59, тел. 223-74-15

PACCMOTPEHO

на заседании инженерной кафедры

протокол № 1 от 25.08.2025

Кириленко К.А. ФИО руководителя кафедры СОГЛАСОВАНО

Заместитель директора

. А. Данилова

от 29.08.2025

РАБОЧАЯ ПРОГРАММА

Информатика. Компьютерное зрение

10 «ИП» класса

(уровень среднего общего образования)

Разработчик:

Кириленко Ксения Алексеевна

Рабочая программа по учебному предмету «Информатика. Компьютерное зрение» (предметная область «Математика и информатика») (далее соответственно – программа по компьютерному зрению, компьютерное зрение) составлена на основе Федеральной рабочей программы по информатике и является авторской, включает пояснительную записку, содержание обучения, планируемые результаты освоения программы по моделированию физических процессов тематическое планирование.

Пояснительная записка отражает общие цели и задачи изучения компьютерного зрения, место в структуре учебного плана, а также подходы к отбору содержания, к определению планируемых результатов.

Содержание обучения раскрывает содержательные линии, которые предлагаются для обязательного изучения в 10 классе на уровне среднего общего образования.

Планируемые результаты освоения программы по компьютерному зрению включают личностные, метапредметные результаты за период обучения в 10 классе на уровне среднего общего образования, а также предметные достижения обучающегося.

1. Пояснительная записка

Общая характеристика учебного предмета "Компьютерное зрение"

Компьютерное зрение представляет собой передовую междисциплинарную область на стыке искусственного интеллекта, машинного обучения, математики и физики, направленную на наделение компьютера способностью «видеть», интерпретировать и понимать визуальную информацию из окружающего мира. Обучение основам компьютерного зрения в школе открывает учащимся возможность не просто использовать, а создавать технологии будущего, развивая глубокое понимание принципов работы ИИ и продвинутые навыки программирования, лежащие в основе автономных систем, дополненной реальности и интеллектуального анализа данных.

Функциональная значимость предмета для школьников заключается в освоении фундаментальных инструментов и алгоритмов для обработки изображений и видео, включая такие ключевые концепции, как фильтрация, выделение признаков, обнаружение объектов, сегментация и классификация. Эти знания переводят абстрактные математические модели в работающие приложения, позволяя решать прикладные задачи из области робототехники, биометрии, создания умных городов и анализа медицинских снимков.

Знание принципов компьютерного зрения и умение применять библиотеки, такие как OpenCV, важно для каждого школьника, стремящегося понять, как машины воспринимают визуальную информацию. Понимание того, как преобразовать пиксели в числовые данные, выделить из них полезные особенности и принять на их основе решение, помогает учащимся развивать алгоритмическое и аналитическое мышление, а также способность к созданию интеллектуальных automated систем.

Библиотека OpenCV, выполняя свои основные функции, позволяет учащимся абстрагироваться от сложной низкоуровневой математики и сосредоточиться на концептуальном построении pipeline обработки изображений. Она предоставляет богатый арсенал готовых алгоритмов, что дает возможность сосредоточиться на постановке задачи, подборе оптимальных методов и интерпретации результатов, что является ключевым этапом в любой исследовательской и инженерной деятельности, связанной с машинным восприятием.

Обучение компьютерному зрению направлено на развитие интеллектуальных и технических способностей учащихся, включая умение работать с многомерными данными (изображения, видео), применять методы линейной алгебры и машинного обучения на практике, оценивать эффективность различных алгоритмов и интегрировать модели в законченные программные продукты. Это способствует развитию критического мышления, навыков работы с большими данными и решения комплексных проблем, что является crucial для успешного обучения и дальнейшей профессиональной реализации в сфере Data Science и AI.

Содержание программы по компьютерному зрению ориентировано также на развитие функциональной грамотности учащихся, включая умение читать и понимать научную и техническую документацию, использовать претренированные модели и дообучать их под конкретные задачи, оценивать этические последствия внедрения технологий наблюдения и распознавания, а также применять полученные знания для создания инновационных проектов, расширяя свои творческие и профессиональные горизонты в цифровую эпоху.

Цели и задачи изучения учебного предмета «Компьютерное зрение».

Изучение компьютерного зрения направлено на достижение следующих целей:

- Формирование целостного представления о компьютерном зрении как ключевой технологии искусственного интеллекта, связывающей теоретические основы обработки сигналов и машинного обучения с их практическим применением для решения задач восприятия и анализа визуальной информации.
- Развитие компетенций в области построения end-to-end pipelines обработки изображений и видео от базовых операций фильтрации и выделения признаков до сложных задач обнаружения, классификации и отслеживания объектов с использованием industry-standard инструментов (OpenCV, TensorFlow/PyTorch).
- Стимулирование интереса к исследовательской и инновационной деятельности в сферах робототехники, беспилотных технологий, дополненной реальности, биометрии и анализа данных через создание работающих прототипов систем машинного восприятия.

Задачи изучения предмета:

- Развивать алгоритмическое и математическое мышление через понимание и практическую реализацию алгоритмов преобразования изображений, работы с матрицами (пикселями), методами оптимизации и линейной алгебры.
- Сформировать навыки сквозной проектной деятельности в области Data Science: от сбора и разметки датасета и выбора архитектуры модели до её обучения, тестирования, развертывания и интерпретации полученных результатов.
- Воспитывать критическое и этическое мышление, понимая ограничения и потенциальные погрешности алгоритмов, важность качества данных и этические последствия использования технологий распознавания и наблюдения.
- Развивать умение самостоятельного освоения сложного инструментария: работать с технической документацией (OpenCV, ML-фреймворки), изучать и адаптировать state-of-the-art модели и решения (например, из GitHub), активно участвуя в профессиональных online-сообществах.

Особенности классов

Рабочая программа по предмету «Информатика. Компьютерное зрение» для 10-го «ИП» класса предназначена для углубленного изучения учащимися информационно-технологического профиля в группе «Искусственный интеллект». На изучение данного модуля отведено 33 часа в 10-м классе.

Место предмета в учебном плане лицея

Учебный план на изучение «Информатика. Компьютерное зрение» в 10 «ИП» классе среднего общего образования отводит 1 учебный час в неделю (всего 33 учебных часов) за счёт части, формируемой участниками образовательных отношений.

Учебный год	Количество часов	
	10 «ИП»	
2025/2026	33	

К тематическому планированию применяется модульный принцип построения образовательной программы, что позволяет выстраивать индивидуальную образовательную парадигму и обеспечивать саморазвитие при индивидуальном темпе работы с учебным материалом, контроль и самоконтроль знаний.

Используемые образовательные технологии, в том числе дистанционные

Обучение компьютерному зрению может осуществляться с использованием дистанционных образовательных технологий (далее ДОТ), которое предполагает как самостоятельное прохождение учебного материала учеником, так и с помощью сопровождения учителя. При применении ДОТ используются платформы: лицейская

платформа дистанционного обучения Moodle, ФГИС «Моя школа», ГИС «Электронная школа» Новосибирской области.

При реализации рабочей программы могут быть использованы материалы для подготовки к профилям олимпиады КД НТИ и стандартов Всероссийского чемпионатного движения по профессиональному мастерству «Профессионалы».

Информация о промежуточной аттестации

Промежуточная аттестация осуществляется по окончании учебного модуля с целью проверки степени и качества усвоения материала по результатам изучения тематических модулей и проводится в форме аттестационных работ.

Текущий контроль осуществляются с целью проверки степени и качества усвоения материала в ходе его изучения в следующих формах: самостоятельных и проверочных работ.

Текущий контроль и промежуточная аттестация осуществляются в соответствии с «Положением об осуществлении текущего контроля успеваемости и промежуточной аттестации обучающихся, их формах, периодичности и порядке проведения муниципального автономного общеобразовательного учреждения города Новосибирска «Лицей № 22 «Надежда Сибири» (протокол педагогического совета №1 от 29.08.2023).

Итоговая аттестация проводится в соответствии с законодательством РФ.

Промежуточная аттестация по компьютерному зрению в 10 «ИП» классе

№ модульн ой	Название модуля	Количество часов в модуле	Номер урока ПА	Форма ПА
MP № 1	Введение в компьютерное зрение	5	5	Практическ ая работа
MP № 2	Предобработка изображения	5	10	Практическ ая работа
MP № 3	Цветовые маски и анализ контуров	4	14	Практическ ая работа
MP № 4	Введение в глубокое обучение	19	33	Практическ ая работа

2. Содержание учебного предмета

Модуль 1 «Введение в компьютерное зрение»

Компьютерное зрение. История и основные области применения. Обзор инструментов: установка Python, OpenCV, NumPy. Первая программа: загрузка и отображение изображения.

Представление изображения в памяти компьютера. Понятие пикселя, цветовые модели (RGB, BGR, Grayscale). Загрузка, отображение и сохранение изображения с помощью cv2.imread, cv2.imshow, cv2.imwrite.

Библиотека NumPy как основа для данных изображения. Создание массивов, индексация, срезы. Работа с изображением как с многомерным массивом. Изменение размера и кадрирование.

Масштабирование, поворот, аффинные преобразования. Использование функций cv2.resize, cv2.rotate, cv2.warpAffine. Выравнивание объекта на изображении.

Модуль 2 «Предобработка изображения»

Ядро свертки. Размытие изображения для удаления шума. Использование усредняющего фильтра и фильтра Гаусса (cv2.blur, cv2.GaussianBlur).

Бинаризация изображения: глобальные и адаптивные методы (cv2.threshold, cv2.adaptiveThreshold). Выделение объектов по яркости.

Эрозия, дилатация для работы с бинарными изображениями. Удаление шума, соединение разрывов. Операции Opening и Closing (cv2.erode, cv2.dilate, cv2.morphologyEx).

Теория градиентов. Оператор Собеля. Канни детектор границ (cv2.Sobel, cv2.Canny). Поиск контуров на бинарном изображении (cv2.findContours).

Модуль 3 «Цветовые маски и анализ контуров»

Преобразование между цветовыми пространствами: RGB, HSV, LAB. Выделение объектов по цвету в HSV пространстве (cv2.cvtColor). Создание маски по диапазону цветов.

Анализ найденных контуров: площадь, периметр, bounding box, центр масс. Фильтрация контуров по размеру и форме.

Полный конвейер: загрузка, преобразование в оттенки серого, детектор границ Канни, поиск контуров, отрисовка контуров на исходном изображении.

Модуль 4 «Введение в глубокое обучение»

Ключевые точки (features) и дескрипторы. Сопоставление, панорамы, отслеживание (tracking). Детектор углов Харриса.

Быстрый и бесплатный детектор и дескриптор ORB. Поиск ключевых точек на изображении с помощью cv2.ORB create().

Алгоритм сопоставления дескрипторов (Brute-Force Matcher). Визуализация совпадений. Поиск объекта на сцене по шаблону.

Теория создания панорам. Практическое знакомство с функциями cv2. Stitcher для автоматического создания панорамы из нескольких изображений.

Классификация. Подготовка данных: изображения в векторы (flatten). Пример: классификация рукописных цифр (датасет MNIST).

Загрузка датасета MNIST средствами OpenCV или scikit-learn. Визуализация примеров. Разделение на обучающую и тестовую выборки.

Принцип работы k-ближайших соседей (k-Nearest Neighbors). Обучение модели k-NN на данных MNIST и оценка ее точности.

Готовые модели для обнаружения объектов. Каскады Хаара для обнаружения лиц (cv2.CascadeClassifier). Детектирование лиц на фотографии.

Захват видео с веб-камеры (cv2.VideoCapture). Обработка видео потоком: чтение кадров, обработка, отображение результата.

Создание простого детектора движения на основе вычитания фона между кадрами. Вычисление разности кадров и пороговая обработка.

Введение в трекинг. Алгоритм оптического потока Лукаса-Канаде для отслеживания ключевых точек между кадрами видео (cv2.calcOpticalFlowPyrLK).

Сверточная нейронная сеть (CNN). Обзор архитектуры. Загрузка и использование предобученной модели из OpenCV (например, для классификации изображений).

Понятие семантической сегментации. Простые методы, такие как Watershed алгоритм, для разделения слипшихся объектов на изображении.

Повышение резкости изображения с помощью фильтров (лапласиан, unsharp masking). Сравнение результатов с размытием.

Метод сравнения шаблонов (Template Matching) с помощью функции cv2.matchTemplate. Поиск точного совпадения части изображения.

Наложение изображения на обнаруженный объект (например, на найденный по шаблону маркер) с помощью перспективного преобразования.

OCR. История и современное применение. Обзор библиотеки Tesseract (pytesseract). Установка и настройка. Простейшее распознавание текста с чистого изображения (image_to_string).

Перевод в оттенки серого, размытие, бинаризация (Оцу), морфологические операции. Сравнение качества распознавания до и после обработки.

Планируемые образовательные результаты освоения учебного предмета Компьютерное зрение

Личностные результаты

- 1. сформированность мировоззрения, соответствующего современному уровню развития науки и техники;
- 2. готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- 3. навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, учебно-исследовательской, проектной и других видах деятельности;
- 4. эстетическое отношение к миру, включая эстетику научного и технического творчества;

Метапредметные результаты:

405	Анализировать полученные в ходе решения задачи результаты, критически
1.2.5	оценивать их достоверность, прогнозировать изменение в новых условиях
	Уметь переносить знания в познавательную и практическую области
	жизнедеятельности;
1.2.6	уметь интегрировать знания из разных предметных областей;
	осуществлять целенаправленный поиск переноса средств и способов действия в
	профессиональную среду
	Способность и готовность к самостоятельному поиску методов решения
	практических задач, применению различных методов познания;
	ставить и формулировать собственные задачи в образовательной деятельности и
4.0.7	жизненных ситуациях;
1.2.7	ставить проблемы и задачи, допускающие альтернативные решения;
	выдвигать новые идеи, предлагать оригинальные подходы и решения;
	разрабатывать план решения проблемы с учетом анализа имеющихся
	материальных и нематериальных ресурсов
1.3	Работа с информацией
1.0	* * -
101	Владеть навыками получения информации из источников разных типов,
1.3.1	самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию
	информации различных видов и форм представления
	Создавать тексты в различных форматах с учетом назначения информации и
1.3.2	целевой аудитории, выбирая оптимальную форму представления и визуализации
	целевой аудитории, выопрая оптимальную форму представления и визуализации
4.0.0	Оценивать достоверность, легитимность информации, ее соответствие правовым и
1.3.3	морально-этическим нормам
	Использовать средства информационных и коммуникационных технологий в
	решении когнитивных, коммуникативных и организационных задач с
1.3.4	соблюдением требований эргономики, техники безопасности, гигиены,
	ресурсосбережения, правовых и этических норм, норм информационной
	безопасности
405	Владеть навыками распознавания и защиты информации, информационной
1.3.5	безопасности личности
2	Коммуникативные УУД
2.1	Общение
	Осуществлять коммуникации во всех сферах жизни;
2.1.1	владеть различными способами общения и взаимодействия
_	Развернуто и логично излагать свою точку зрения с использованием языковых
2.1.2	средств
2.1.3	Аргументированно вести диалог
3	пред политрование вести диалег
3.1	Самоорганизация
5.1	Самостоятельно осуществлять познавательную деятельность, выявлять проблемы,
	ставить и формулировать собственные задачи в образовательной деятельности и
3.1.1	жизненных ситуациях;
	жизненных ситуациях, давать оценку новым ситуациям
	Самостоятельно составлять план решения проблемы с учетом имеющихся ресурсов, собственных возможностей и предпочтений;
	ресурсов, сооственных возможностей и предпочтении; делать осознанный выбор, аргументировать его, брать ответственность за
3.1.2	делать осознанный выоор, аргументировать его, орать ответственность за решение;
3.1.2	
	оценивать приобретенный опыт;
	способствовать формированию и проявлению широкой эрудиции в разных областях знаний
2.2	
3.2	Самоконтроль

3.2.1	Давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям
3.2.2	Владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований; использовать приемы рефлексии для оценки ситуации, выбора верного решения; уметь оценивать риски и своевременно принимать решения по их снижению
3.3	Эмоциональный интеллект, предполагающий сформированность: саморегулирования, включающего самоконтроль, умение принимать ответственность за свое поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому; внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать, исходя из своих возможностей

Выпускник научится:

- 1. самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
- 2. продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- 3. владеть навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем;
- 4. использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности.

Выпускник получит возможность научиться:

- 1. быть готовым и способным к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 2. быть способным и готовым к самостоятельному поиску методов решения практических задач, применению различных методов познания.

Регулятивные универсальные учебные действия

- 1. самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- 2. оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- 3. ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- 4. оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- 5. выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- 6. организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
 - 7. сопоставлять полученный результат деятельности с поставленной заранее целью.

Познавательные универсальные учебные действия

- 1. искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- 2. критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- 3. использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- 4. находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- 5. выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- 6. выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
 - 7. менять и удерживать разные позиции в познавательной деятельности.

Коммуникативные универсальные учебные действия

- 1. осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- 2. при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
- 3. координировать и выполнять работу в условиях реального, виртуального комбинированного взаимодействия;
- 4. развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
 - 5. распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

Предметные результаты

Выпускник будет демонстрировать:

- 1) систематизация знаний, относящихся к математическим объектам информатики; умение строить математические объекты информатики, в том числе логические формулы;
- 2) сформированность базовых навыков и умений по соблюдению требований *техники безопасности*, гигиены и ресурсосбережения при работе со средствами информатизации;
- 3) владение опытом построения и использования компьютерно-математических моделей, проведения экспериментов и статистической обработки данных с помощью компьютера, интерпретации результатов, получаемых в ходе моделирования реальных процессов; умение оценивать числовые параметры моделируемых объектов и процессов; сформированность представлений о необходимости анализа соответствия модели и моделируемого объекта (процесса);
- 4) сформированность представлений о способах хранения и простейшей обработке данных; умение пользоваться *базами данных* и справочными системами; владение основными сведениями о базах данных, их структуре, средствах создания и работы с ними;

Выпускник получит возможность продемонстрировать:

1. владение системой базовых знаний, отражающих *вклад информатики* в формирование современной научной картины мира;

2. владение навыками *алгоритмического мышления* и понимание необходимости формального описания алгоритмов.

ПРОВЕРЯЕМЫЕ НА ЕГЭ ПО ИНФОРМАТИКЕ ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

Код проверяемого требования	Проверяемые требования к предметным результатам освоения основной образовательной программы среднего общего образования
1.	Знать (понимать)
1.1	Понимание основных принципов устройства и функционирования современных стационарных и мобильных компьютеров; тенденций развития компьютерных технологий; владение навыками работы с операционными системами и основными видами программного обеспечения для решения учебных задач по выбранной специализации
1.4	Понимание базовых алгоритмов обработки числовой и текстовой информации (запись чисел в позиционной системе счисления, делимость целых чисел; нахождение всех простых чисел в заданном диапазоне; обработка многоразрядных целых чисел; анализ символьных строк и других), алгоритмов поиска и сортировки
1.5	Знание функциональные возможности инструментальных средств среды разработки
1.6	Владение основными сведениями о базах данных, их структуре, средствах создания и работы с ними
1.7	Понимание возможностей и ограничений технологий искусственного интеллекта в различных областях; наличие представлений об использовании информационных технологий в различных профессиональных сферах
2.	Уметь
2.1	Умение использовать компьютерно-математические модели для анализа объектов и процессов: формулировать цель моделирования, выполнять анализ результатов, полученных в ходе моделирования; оценивать адекватность модели моделируемому объекту или процессу; представлять результаты моделирования в наглядном виде
2.2	Умение классифицировать основные задачи анализа данных (прогнозирование, классификация, кластеризация, анализ отклонений); понимать последовательность решения задач анализа данных: сбор первичных данных, очистка и оценка

Код проверяемого требования	Проверяемые требования к предметным результатам освоения основной образовательной программы среднего общего образования					
	качества данных, выбор и (или) построение модели, преобразование данных, визуализация данных, интерпретация результатов					
2.9	Умение анализировать алгоритмы с использованием таблиц трассировки; определять без использования компьютера результаты выполнения несложных программ, включающих циклы, ветвления и подпрограммы, при заданных исходных данных					
2.10	Умение определять сложность изучаемых в курсе базовых алгоритмов (суммирование элементов массива, сортировка массива, переборные алгоритмы, двоичный поиск) и приводить примеры нескольких алгоритмов разной сложности для решения одной задачи					
2.11	Владение универсальным языком программирования высокого уровня (Паскаль, Python, Java, C++, C#), представлениями о базовых типах данных и структурах данных; умение использовать основные управляющие конструкции; умение осуществлять анализ предложенной программы: определять результаты работы программы при заданных исходных данных; определять, при каких исходных данных возможно получение указанных результатов; выявлять данные, которые могут привести к ошибке в работе программы; формулировать предложения по улучшению программного кода					
2.12	Умение реализовывать на выбранном для изучения языке программирования высокого уровня (Паскаль, Руthon, Java, С++, С#) типовые алгоритмы обработки чисел, числовых последовательностей и массивов: представление числа в виде набора простых сомножителей; нахождение максимальной (минимальной) цифры натурального числа, записанного в системе счисления с основанием, не превышающим 10; вычисление обобщённых характеристик элементов массива или числовой последовательности (суммы, произведения среднего арифметического, минимального и максимального элементов, количества элементов, удовлетворяющих заданному условию); сортировку элементов массива; умение использовать в программах данные различных типов с учётом ограничений на диапазон их возможных значений, применять при решении задач структуры данных (списки, словари, стеки, очереди, деревья); применять стандартные и собственные подпрограммы для обработки числовых данных и символьных строк; использовать					

Код проверяемого требования	Проверяемые требования к предметным результатам освоения основной образовательной программы среднего общего образования			
		рограмм библиотеки редства отладки	подпрограмм; программ	умение в среде

ПЕРЕЧЕНЬ ЭЛЕМЕНТОВ СОДЕРЖАНИЯ, ПРОВЕРЯЕМЫХ НА ЕГЭ ПО ИНФОРМАТИКЕ

Код	Проверяемый элемент содержания					
3	Алгоритмы и программирование					
3.1	Формализация понятия алгоритма. Машина Тьюринга как универсальная модель вычислений					
3.2	Оценка сложности вычислений. Время работы и объём используемой памяти, их зависимость от размера исходных данных. Оценка асимптотической сложности алгоритмов. Алгоритмы полиномиальной сложности. Переборные алгоритмы. Примеры различных алгоритмов решения одной задачи, которые имеют различную сложность					
3.3	Определение возможных результатов работы простейших алгоритмов управления исполнителями и вычислительных алгоритмов. Определение исходных данных, при которых алгоритм может дать требуемый результат					
3.4	Алгоритмы обработки натуральных чисел, записанных в позиционных системах счисления: разбиение записи числа на отдельные цифры, нахождение суммы и произведения цифр, нахождение максимальной (минимальной) цифры. Представление числа в виде набора простых сомножителей. Алгоритм быстрого возведения в степень. Поиск простых чисел в заданном диапазоне с помощью алгоритма «решето Эратосфена»					
3.5	Многоразрядные целые числа, задачи длинной арифметики					
3.6	Язык программирования (Паскаль, Python, Java, C++, C#). Типы данных: целочисленные, вещественные, символьные, логические. Ветвления. Сложные условия. Циклы с условием. Циклы по переменной. Обработка данных, хранящихся в файлах. Текстовые и двоичные файлы. Файловые переменные (файловые указатели). Чтение из файла. Запись в файл. Разбиение задачи на подзадачи. Подпрограммы (процедуры и функции). Использование стандартной библиотеки языка программирования					
3.7	Рекурсия. Рекурсивные процедуры и функции. Использование стека для организации рекурсивных вызовов					

Код	Проверяемый элемент содержания
3.8	Численные методы. Точное и приближённое решения задачи. Численное решение уравнений с помощью подбора параметра. Численные методы решения уравнений: метод перебора, метод половинного деления. Приближённое вычисление длин кривых. Вычисление площадей фигур с помощью численных методов (метод прямоугольников, метод трапеций). Поиск максимума (минимума) функции одной переменной методом половинного деления
3.9	Обработка символьных данных. Встроенные функции языка программирования для обработки символьных строк. Алгоритмы обработки символьных строк: подсчёт количества появлений символа в строке, разбиение строки на слова по пробельным символам, поиск подстроки внутри данной строки, замена найденной подстроки на другую строку. Генерация всех слов в некотором алфавите, удовлетворяющих заданным ограничениям. Преобразование числа в символьную строку и обратно
3.10	Массивы и последовательности чисел. Вычисление обобщённых характеристик элементов массива или числовой последовательности (суммы, произведения, среднего арифметического, минимального и максимального элементов, количества элементов, удовлетворяющих заданному условию). Линейный поиск заданного значения в массиве. Алгоритмы работы с элементами массива с однократным просмотром массива. Сортировка одномерного массива. Простые методы сортировки (метод пузырька, метод выбора, сортировка вставками). Сортировка слиянием. Быстрая сортировка массива (алгоритм QuickSort). Двоичный поиск в отсортированном массиве
3.11	Двумерные массивы (матрицы). Алгоритмы обработки двумерных массивов: заполнение двумерного числового массива по заданным правилам, поиск элемента в двумерном массиве, вычисление максимума (минимума) и суммы элементов двумерного массива, перестановка строк и столбцов двумерного массива
3.12	Словари (ассоциативные массивы, отображения). Хэш-таблицы. Построение алфавитно-частотного словаря для заданного текста
3.13	Стеки. Анализ правильности скобочного выражения. Вычисление арифметического выражения, записанного в постфиксной форме. Очереди. Использование очереди для временного хранения данных
3.14	Алгоритмы на графах. Построение минимального остовного дерева взвешенного связного неориентированного графа. Количество различных путей между вершинами ориентированного ациклического графа. Алгоритм Дейкстры
3.15	Деревья. Реализация дерева с помощью ссылочных структур. Двоичные (бинарные) деревья. Построение дерева для заданного арифметического

Код	Проверяемый элемент содержания					
	выражения. Рекурсивные алгоритмы обхода дерева. Использование стека и очереди для обхода дерева					
3.16	Динамическое программирование как метод решения задач с сохранением промежуточных результатов. Задачи, решаемые с помощью динамического программирования: вычисление рекурсивных функций, подсчёт количества вариантов, задачи оптимизации					
3.17	Понятие об объектно-ориентированном программировании. Объекты и классы. Свойства и методы объектов. Объектно-ориентированный анализ. Разработка программ на основе объектно-ориентированного подхода. Инкапсуляция, наследование, полиморфизм					
4	Информационные технологии					
4.1	Анализ данных. Основные задачи анализа данных: прогнозирование, классификация, кластеризация, анализ отклонений. Последовательность решения задач анализа данных: сбор первичных данных, очистка и оценка качества данных, выбор и (или) построение модели, преобразование данных, визуализация данных, интерпретация результатов. Программные средства и Интернет-сервисы для обработки и представления данных. Большие данные. Машинное обучение					
4.2	Анализ данных с помощью электронных таблиц. Вычисление суммы, среднего арифметического, наибольшего (наименьшего) значения диапазона. Вычисление коэффициента корреляции двух рядов данных. Построение столбчатых, линейчатых и круговых диаграмм. Построение графиков функций. Подбор линии тренда, решение задач прогнозирования. Решение задач оптимизации с помощью электронных таблиц					

3. Тематическое планирование

	Наименование разделов и тем программы	Количество часов				
№ п/п		Всего	Контрол ьные работы	Практич еские работы	Электронные (цифровые) образовательные ресурсы	
	Модуль №1	«Введе	ние в комп	ьютерное з	рение» - 5 часов	
1.1	Введение в компьютерное зрение	4				
1.2	Самостоятельная работа «Введение в компьютерное зрение»	1		1		
	Модуль №2 «Предобработка изображения» - 5 часов					

2.1	Предобработка изображения	4			
2.2	Самостоятельная работа «Предобработка изображения»	1		1	
	Модуль №3 «	Щветов	вые маски и	анализ ког	нтуров» - 4 часов
3.1	Механическая система	3			
3.2	Самостоятельная работа «Механическая система»	1		1	
	Модуль №	4 «Введ	ение в глуб	окое обуче	ние» - 19 часов
3.1	Введение в глубокое обучение	18		•	
3.2	Аттестационная работа «Введение в глубокое обучение»	1		1	

5. Приложения к программе

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ

№ п/п	Наименование разделов и тем программы	Количество часов			Электронны е (цифровые)		
		Всего	Контрольные работы	Практические работы	образовател ьные ресурсы		
	Модуль №1 «Простая физическая сцена» - 7 часов						
1.1	Введение в компьютерное зрение	1					
1.2	Основы цифрового изображения	1					
1.3	Основы NumPy	1					

	для обработки изображений					
1.4	Геометрические преобразования	1				
1.5	Самостоятельн ая работа №1	1				
	Модулі	ь №2 «Сист	гема со столкнов	ениями» - 5 часов		
2.1	Понятие фильтра и свертки	1				
2.2	Пороговая обработка	1				
2.3	Морфологическ ие операции	1				
2.4	Градиенты и выделение границ	1				
2.5	Самостоятельн ая работа №2	1		1		
	Модуль №3 «Механическая система» - 5 часов					
3.1	Работа с цветовыми пространствами	1				
3.2	Вычисление статистики контуров	1				
3.3	Поиск и анализ контуров на реальном изображении	1				
3.4	Самостоятельн ая работа №3	1				
Модуль №4 «Создание комплексной физической симуляции» - 16 часов						
4.1	Введение в особенности изображения	1				

4.2	ORB детектор	1		
4.3	Сопоставление ключевых точек	1		
4.4	Создание панорамы	1		
4.5	Классификация изображений	1		
4.6	Работа с датасетом	1		
4.7	Модель k-NN для классификации цифр	1		
4.8	Распознавание лиц с использованием каскадов Хаара	1		
4.9	Основы работы с видео	1		
4.10	Детектор движения на видео	1		
4.11	Отслеживание объектов (трекинг)	1		
4.12	Введение в глубокое обучение	1		
4.13	Сегментация изображений	1		
4.14	Улучшение деталей изображения	1		
4.15	Поиск шаблона на изображении	1		

4.16	Простые методы дополненной реальности	1		
4.17	Введение в оптическое распознавание символов (OCR)	1		
4.18	Предобработка изображения для улучшения качества ОСК	1		
4.19	Итоговая контрольная работа	1	1	

КИМ Модуль 1 «Введение в компьютерное зрение»

Цель: Освоить базовые операции ввода/вывода, понять представление изображения как массива NumPy, научиться манипулировать отдельными пикселями и областями, выполнять геометрические преобразования.

Задача: Создать программу, которая загружает фотографию, накладывает на нее несколько преобразований и создает коллаж из результатов.

Пошаговое руководство:

Базовые операции:

Загрузите цветное изображение с помощью cv2.imread().

Выведите в консоль его форму (shape). Объясните, что означают числа (высота, ширина, количество цветовых каналов).

Преобразуйте изображение в оттенки серого (cv2.cvtColor) и сохраните его (cv2.imwrite).

Манипуляции с массивами:

Создайте копию исходного изображения.

Используя срезы NumPy, нарисуйте на ней ярко-красный квадрат в центре. Помните про порядок каналов BGR.

Обрежьте (стор) изображение, оставив только область этого квадрата.

Геометрические преобразования:

Уменьшите исходное изображение в 2 раза с помощью cv2.resize (используйте интерполяцию cv2.INTER_LINEAR).

Поверните исходное изображение на 45 градусов с помощью cv2.warpAffine и cv2.getRotationMatrix2D.

Создание коллажа:

Используя np.hstack и np.vstack, соберите коллаж из 4-х изображений: исходное, с красным квадратом, уменьшенное, повернутое.

Отобразите коллаж в окне cv2.imshow и сохраните результат.

Модуль 2 «Предобработка изображения»

Цель: Освоить базовый пайплайн обработки изображения: удаление шума, бинаризация, морфологические операции для постобработки, детекция границ и поиск контуров.

Задача: Написать программу, которая автоматически находит и подсчитывает количество монет на фотографии.

Пошаговое руководство:

Предобработка и сглаживание:

Загрузите изображение с монетами на контрастном фоне (например, монеты на темном столе).

Преобразуйте его в оттенки серого.

Примените размытие по Гауссу (cv2.GaussianBlur) для подавления шума и мелких деталей.

Бинаризация:

Примените адаптивную бинаризацию (cv2.adaptiveThreshold) или попробуйте подобрать порог для глобальной (cv2.threshold c cv2.THRESH_BINARY_INV), чтобы монеты стали белыми, а фон — черным.

Морфологические операции (постобработка маски):

Примените операцию Closing (cv2.morphologyEx c cv2.MORPH_CLOSE), используя круглое ядро, чтобы закрыть небольшие разрывы в контурах монет.

Примените операцию Opening (cv2.morphologyEx c cv2.MORPH_OPEN), используя круглое ядро, чтобы удалить мелкие шумы и artifacts c фона.

Поиск и анализ контуров:

Найдите все контуры на полученном бинарном изображении (cv2.findContours в режиме cv2.RETR_EXTERNAL).

Для каждого найденного контура:

Вычислите его площадь.

Отфильтруйте контуры по площади, чтобы отсечь слишком маленькие объекты (например, кусочки мусора).

Найдите bounding box и центр масс контура.

Hapucyйте контур и bounding box на исходном цветном изображении (cv2.drawContours, cv2.rectangle).

Выведите номер монеты рядом с ее центром масс (cv2.putText).

Вывод результата:

Выведите общее количество найденных монет в консоль.

Отобразите итоговое изображение с обведенными монетами.

Модуль 3 «Цветовые маски и анализ контуров»

Цель: Научиться работать с цветовыми пространствами, создавать маски по диапазону цветов, анализировать и фильтровать контуры по свойствам, строить полные пайплайны обработки.

Задача: Создать программу, которая находит на изображении объекты определенного цвета (например, красные яблоки или синие мячи), фильтрует их по размеру и вычисляет их точное количество.

Пошаговое руководство:

Работа с пветом:

Загрузите изображение с разноцветными объектами.

Преобразуйте изображение из BGR в HSV пространство (cv2.cvtColor). Объясните, почему HSV лучше подходит для segmentaции по цвету.

Создание маски:

Определите нижний и верхний пороги для целевого цвета (например, для красного цвета в HSV потребуется два диапазона, т.к. он находится на стыке).

Создайте бинарную маску с помощью cv2.inRange(), где пиксели, попадающие в диапазон, становятся белыми, а все остальные — черными.

Постобработка маски:

Улучшите маску с помощью морфологических операций (например, Closing для удаления черных точек внутри объектов и Opening для удаления белых шумов с фона).

Поиск и анализ контуров:

Найдите контуры на финальной маске.

Для каждого контура:

Вычислите площадь.

Отфильтруйте контуры, чья площадь меньше заданного порога (чтобы игнорировать маленькие шумы).

Вычислите bounding box и центр масс.

Нарисуйте контур на исходном изображении и подпишите его площадь.

Визуализация и вывод:

Отобразите исходное изображение с обведенными объектами.

Отобразите полученную цветовую маску (в градациях серого) для наглядности.

Выведите в консоль список площадей всех найденных объектов и их общее количество.

Модуль 4 «Введение в глубокое обучение»

Цель работы: Практическое закрепление полученных знаний и навыков в области компьютерного зрения путем разработки законченного мини-проекта, демонстрирующего умение комбинировать различные изученные методы обработки изображений и видео для решения практической задачи.

Постановка задачи:

Разработать программу на Python с использованием библиотек OpenCV и NumPy, которая:

- 1. Решает конкретную практическую задачу из области компьютерного зрения согласно выбранному варианту.
- 2. Интегрирует не менее 3-4 изученных технологий (например, работа с цветовыми пространствами, поиск контуров, морфологические операции и др.).
- 3. Предоставляет наглядный визуальный результат (обработанное изображение, видео с наложенными эффектами, график).
- 4. Является законченным работающим приложением (скриптом), готовым к демонстрации.

Рекомендации по выполнению:

- 1. Оцените свои силы и выберите задание, в котором вы понимаете все этапы решения.
- 2. Разбейте большую задачу на простые шаги (например: захват видео, нахождение маркера, наложение изображения, отображение результата).
- 3. Не пытайтесь написать всю программу сразу. Реализуйте каждый шаг по отдельности и убедитесь, что он работает корректно.
- 4. Большинство задач можно решить, грамотно комбинируя и адаптируя код, разобранный на уроках.
- 5. Подбирать гиперпараметры алгоритмов придется экспериментально для каждого конкретного случая.

6. Закомментируйте ключевые участки кода, чтобы объяснить, какой этап задачи он решает.

Варианты заданий

Вариант 1: Умный фоторедактор

Создайте программу, которая применяет к изображению выбранный пользователем эффект из списка: стилизация под мультфильм (через выделение границ и квантование цвета), сепия, виньетирование, добавление шума и последующее его удаление с помощью фильтров.

Вариант 2: Детектор и анализатор движения

На основе видео с веб-камеры реализуйте детектор движения. Выделите движущиеся объекты, обведите их рамкой и выводите текст с направлением их движения (влево, вправо, вверх, вниз).

Вариант 3: Виртуальный хромакей

Создайте аналог зеленого экрана. Программа должна заменять фон за человеком на веб-камере на любое другое изображение. Используйте работу с цветовым пространством HSV для выделения фона.

Вариант 4: Распознаватель жестов

Напишите программу, которая распознает простые жесты руки перед камерой (например, количество выставленных пальцев). Используйте пороговую обработку для выделения руки и анализ контуров для подсчета пальцев.

Вариант 5: Сканер и корректор документов

Создайте программу, которая по фото документа, сделанному на телефон, находит его контуры, выпрямляет перспективу и обрезает лишнее, создавая идеально ровное сканированное изображение. Добавьте повышение контрастности.

Вариант 6: Система дополненной реальности по маркеру

Реализуйте простую AR-систему. Накладывайте поверх заранее заданного бумажного маркера (например, черно-белого квадрата с узором) виртуальное изображение или 3D-модель (можно простой куб, нарисованный линиями).

Вариант 7: Панорама

Создайте программу, которая принимает несколько перекрывающихся фотографий одной сцены, находит на них общие ключевые точки (через ORB) и автоматически склеивает их в одну широкую панораму.

Вариант 8: Цифровой считыватель показаний

Напишите программу, которая обрабатывает изображение аналоговых приборов (например, стрелочных часов или вольтметра), находит стрелку и рассчитывает ее угол, чтобы перевести показания в цифровой вид.

Вариант 9: Классификатор простых объектов

Обучите простой классификатор (kNN) на датасете из нескольких классов (например, "кружка", "карандаш", "ножницы"). Реализуйте программу, которая с помощью вебкамеры определяет и подписывает эти объекты.

Вариант 10: Детектор и корректор "красных глаз"

Напишите алгоритм, который находит на портретной фотографии артефакты "красных глаз" от вспышки и автоматически убирает их, закрашивая область зрачка более естественным цветом.

Вариант 11: Трекер цвета

Создайте программу, которая позволяет пользователю кликнуть по любому цвету на видео с веб-камеры, а затем в реальном времени отслеживает и обводит все объекты этого цвета.

Вариант 12: Генератор текстуры из фото

Реализуйте алгоритм, который создает бесшовную текстуру из произвольного изображения (например, кирпичной стены или листвы). Используйте методы клонирования и сшивания.

Вариант 13: Детектор эмоций

Усовершенствуйте стандартный детектор лиц, добавив анализ области рта и глаз (открыт/закрыт, улыбка/нет) для простого определения базовых эмоций (радость, удивление).

Вариант 14: Виртуальный художник

Напишите программу, которая в реальном времени преобразует видео с веб-камеры, применяя эффекты, имитирующие художественные стили: акварель, масляная живопись (через фильтры размытия и выделения границ).

Вариант 15: Оптический измеритель

Создайте программу, которая по фото объекта рядом с эталонным объектом известного размера (например, монетой) вычисляет и выводит размеры других объектов в кадре.